
2.0 IDEAL CYCLES IN ENGINES (AIR STANDARD CYCLES) 

2.0 Air Standard Cycles 

Internal combustion engines are classified into two groups which are: (a) the rotator and 

(b) the reciprocating internal combustion engines. A good example of the rotary internal 

combustion engine is the gas turbine. The reciprocating internal combustion engines which 

are classified mainly into two groups: (i) Spark Ignition engines and (ii) Compression 

Ignition engines and these group of engines operating on Otto and Diesel cycles respectively.  

In these engines, the products of combustion are expelled to its surroundings and this 

makes these engines operate on open cycles. For each cycles, fresh charge (a mixture of air 

and fuel) is introduced. To study the operations and performances of these engines, they are 

represented with theoretical engines operating on thermodynamic cycles and these theoretical 

engines are referred to as air standard engines in which the working fluid is air. In these 

engines, heat is added from an external source as opposed to burning fuel and a heat sink is 

provided as opposed to exhaust, thus returning the air back to its original state. 

The following assumptions are made for the air standard cycle: 

 The working fluid (air) has a constant mass throughout the entire air cycle and the air 

is taken to be ideal. 

 The air maintains a constant specific heat capacity throughout the cycle. 

 The combustion process is replaced by a heat transfer process from an external heat 

source. 

 The cycle is completed by the heat transfer to the surrounding in contrast to the 

exhaust and the intake processes of an actual engine. 

 All the processes are internally reversible.  

 

2.1 GAS POWER CYCLES 

2.1.1 Otto Cycle 

This cycle which is named after the inventor, Nicolaus Otto, whose engine, operated 

on this principle in 1876. 

The diagram for the ideal air standard Otto cycle is shown below: 



 
Figure 1: (a) The T-S diagram for an air-standard Otto cycle (b) The P-V diagram for the air-

standard Otto cycle 

Process 1 -2: Isentropic compression of air takes place from state 1 to state 2. 

Process 2-3: constant volume heat addition takes place from state 2 to state3. 

Process 3–4: Isentropic expansion occurs from state 3 to state 4. 

Process 4-1: heat rejection at constant volume occurs from state 4 to state 1. 

Qin is the heat supplied at constant volume 

 23 TTCQ vin            (1) 

Heat rejected Qout 

 14 TTCQ vout            (2) 
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For the isentropic processes, the following expressions hold 

1Tv = constant                   (4a) 

Where, 

   is the specific heat capacity ratio or adiabatic index of air. 
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Where 
v   = compression ratio 



Since,  
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Substituting these expressions into equ.  (3), gives: 

 
  1

14

141 


 


vTT
TT

          (6) 

Therefore, 

1

11  


v

           (7) 

QUESTION 1 

A petrol engine has a bore 80mm, a stroke of 110mm and a clearance volume of 53.80 

cm3. Calculate thermal efficiency of the petrol engine based on air standard Otto cycle. 

Solution 

The engine bore D = 80mm = 8 cm = 0.08 m 

Engine Stroke L = 110mm = 11cm= 0.11m 
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Where, 

c = compression ratio 

  = specific heat ratios 
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Total engine volume sc VVV  = 53.8 + 552.92 = 606.72 cm3 
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2.1.2 Diesel Cycle 

The following processes take place in an air-standard Diesel cycle: 

Process 1 -2: Isentropic compression of air takes place from state 1 to state 2. 

Process 2-3: constant pressure heat addition takes place from state 2 to state3. 

Process 3–4: Isentropic expansion occurs from state 3 to state 4. 

Process 4-1: heat rejection at constant volume occurs from state 4 to state 1. 

To calculate the thermal efficiency of the diesel engine, the heat supplied and the heat 

rejected are required.  

 

 
Figure 2: (a) The P-V diagram for the air-standard Diesel cycle (b) The T-S diagram for the 

air-standard Diesel cycle. 

 (i) Show that the thermal efficiency ( th ) of an engine operating on a diesel cycle is:  
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Where, 



 v  is the engine compression ratio 

 C  is the cut-off ratio 

  is the ratio of specific heats       
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The heat supplied at constant pressure is given as: 

 231 TTmcQ p   

The heat rejected at constant volume Q2 is given as: 

 142 TTmcQ v   

Substituting (2) and (3) into (1) we have: 
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At the isentropic compression stage, 
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For the isentropic expansion stage: 
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QUESTION 2 

 An engine operates on the air standard diesel cycle. The inlet temperature and 

pressure are 27˚C and 100KPa respectively. The compression ratio is 12:1 and the heat 

addition is 1800KJ/kg. Calculate the maximum temperature and pressure of the cycle, the 

thermal efficiency and the mean effective pressure. 

Solution 

For the isentropic compression process from state 1 to state 2, 

 
CPv 

and CTv 1  

4.1  

T1 = 300 K; P1 = 100kPa; 
c  = 12 and heat supplied Q23 = 1800KJ/kg. 

To calculate the air temperature at the end of compression, 

 14.11
12 )12(300    vTT = 810.58 K. 

The pressure at the end of the compression stroke P2 is given as: 

 KPaPP v 30.3242)12(100 4.1
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The constant pressure heat addition process: 
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T3 = 2601.62 K. 

The cycles maximum temperature T3 = 2601.62 K. 

The cycles maximum pressure P3 = P2 = 3242.30kPa. 
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For the isentropic expansion process from state 3 to state 4, 
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R is the specific gas constant for dry air = 0.287kJkg-1K-1 
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Heat rejected at constant volume between state 4 and state 1 

 cv is the specific heat capacity at constant volume = 0.718kJ/kgK  
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Calculation of the Mean Effective Pressure (MEP) 
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The Mean Effective Pressure (MEP) = 1226.93kPa. 

 



2.1.3 GAS TURBINE (BRAYTON) CYCLE 

The following processes take place in an air-standard Brayton cycle: 

Process 1 -2: Isentropic compression of air takes place from state 1 to state 2. 

Process 2-3: constant pressure heat addition takes place from state 2 to state 3. 

Process 3–4: Isentropic expansion occurs from state 3 to state 4. 

Process 4-1: heat rejection at constant pressure occurs from state 4 to state 1. 

The Derivation of the Thermal Efficiency of a Brayton Cycle 

(a) 
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The heat supplied at constant pressure is given as: 

 231 TTmcQ p           

The heat rejected at constant pressure Q2 is given as: 

 142 TTmcQ p           

Substituting (2) and (3) into (1) we have: 
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Substituting this into equation (3) we have, 
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QUESTION 3 

(1) An air standard Brayton cycle has air entering the compressor at 25˚C and 100KPa. 

The pressure ratio of the system is 15 and the maximum allowable temperature in the 

cycle is 1500˚C. 

Calculate; 

(a) The pressure and temperature of each state in the cycle. 

(b) The compressor work, turbine work, the thermal efficiency and the work ratio.   

Solution 

PV diagram 

P1 = 100kPa, T1 = 25 ˚C =298 K, 15
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p3 = p2 = 1500 kPa, T3 = 1500 ˚C = 1773 K 
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P4 = p1 = 100 kPa 

(b) From the first law, 

Compressor work Wcomp = cp (T2 – T1) = 1.005(646 – 298) = 349.74 kJ/kg  

Turbine work Wtur = cp (T3 – T4) = 1.005(1773 – 817.9) = 959.9 kJ/kg   

Net work Wnet = Wtur - Wcomp = 610.14 kJ/kg     

Heat supplied Q1 = h3 – h2 = cp (T3 – T2) = 1.005 (1773 – 646) = 1132.64 kJ/kg  

Thermal Efficiency 539.0
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